

National Shellfish Sanitation Program Five Marine Biotoxin Strategies, Challenges for Offshore Bivalve Molluscan Shellfish Harvest

September 26, 2023

World Seafood Congress in Association with the 13th International Conference on Molluscan Seafood Safety

Laurice Churchill, Senior Consumer Safety Officer International Affairs, Trade, and Commerce | Seafood Inspection Program NOAA Fisheries | U.S. Department of Commerce

National Shellfish Sanitation Program (NSSP)

Guide for the Control of Molluscan Shellfish 2019 Revision

From the U.S. Food and Drug Administration website http://www.fda.gov/Food/GuidanceRegulation/FederalStateFoodPrograms/ucm2006754.htm

NSSP

Cooperative program between federal government, participating states, and tribes where states are the primary authority.

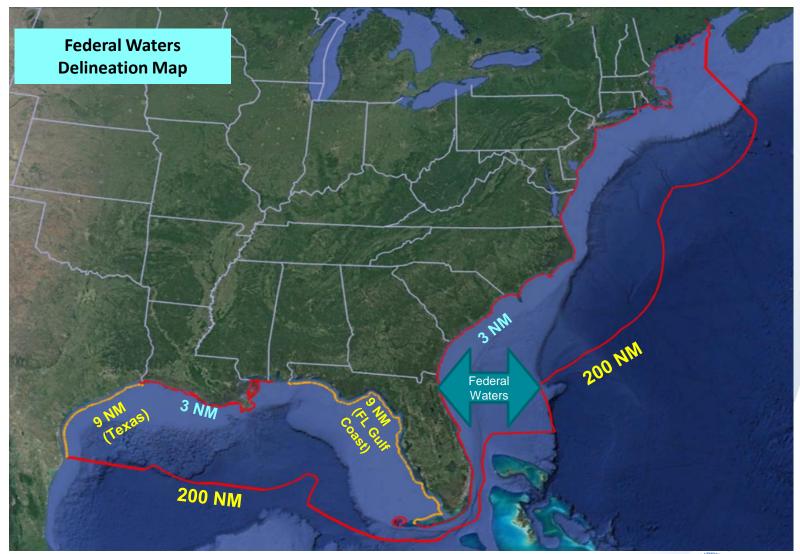
Definition of shellfish:

"means all species of:

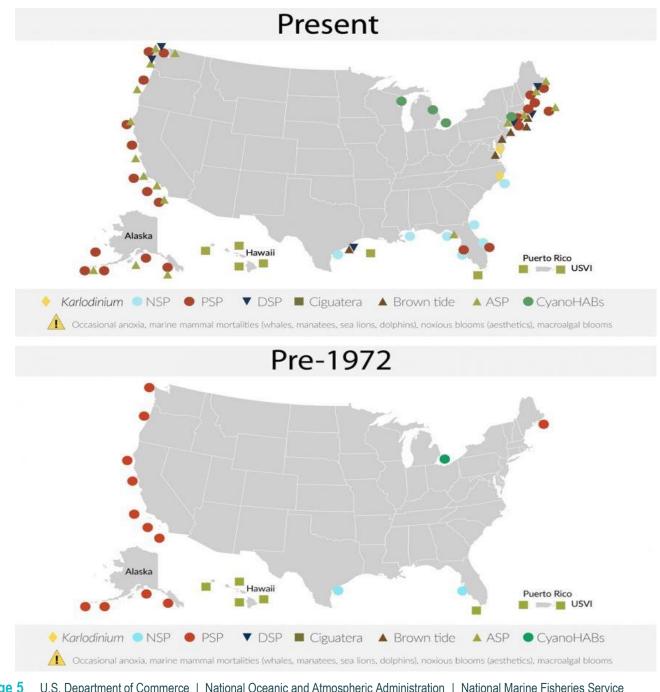
Oysters, clams, mussels, or cockles whether:

Shucked or in the shell;

Raw, including post-harvest processed;


Frozen or unfrozen

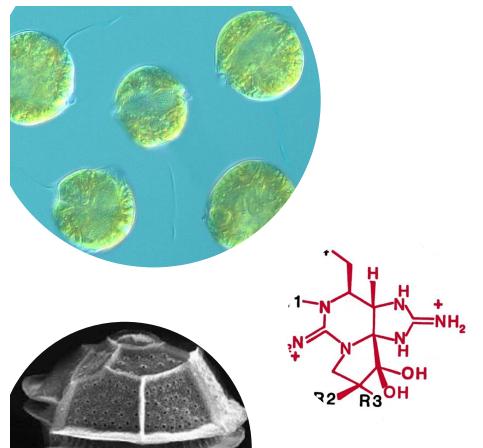
Whole or in part; and


Scallops in any form, except when the final product form is the adductor muscle only."

NSSP in Federal Waters

US HABs Pre-1972 VS 2019

Credit: U.S. National Office for Harmful Algal Blooms

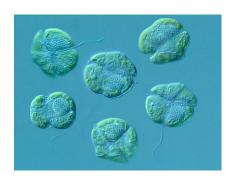


NSSP Model Ordinance Five Types of Shellfish Poisonings

- PSP Paralytic Shellfish Poisoning
- NSP Neurotoxic Shellfish Poisoning
- ASP Amnesic Shellfish Poisoning (also known as Domoic Acid poisoning)
- DSP Diarrhetic Shellfish Poisoning
- AZP Azaspiracid Shellfish Poisoning

Paralytic Shellfish Poisoning (PSP) Toxins

Saxitoxins (STXs)


Dinoflagellates

Alexandrium spp.
Gymnodinium catenatum
Pyrodinium bahamense

Guidance Level 80 μg/100 g

Neurotoxic Shellfish Poisoning (NSP) Toxins

Brevetoxins (BTXs)

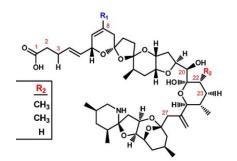
Dinoflagellate

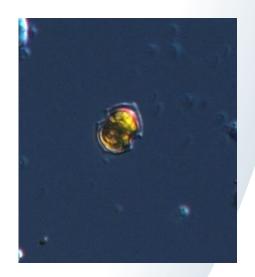
Karenia brevis

Type 2 brevetoxin A

Guidance Level
20 MU/100 g

Azaspiracid Shellfish Poisoning (AZP) toxins


Azaspiracids (AZAs)


Dinoflagellates

Azadinium spp.

Guidance Level

0.16 mg/kg

Diarrhetic Shellfish Poisoning (DSP) Toxins

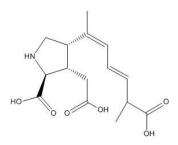
Okadaic Acid & Dinophysis Toxins (OA & DTXs)

Dinoflagellates

Dinophysis spp.

Prorocentrum spp.

Guidance Level 0.16 mg/kg


Amnesic Shellfish Poisoning (ASP) Toxins

Domoic Acid (DA)

Diatoms

Pseudo-nitzschia spp.

Guidance Level 20 mg/kg

Controlling Marine Biotoxin in Shellfish

Contingency Plan

- Emergence of toxinproducing phytoplankton that has historically occurred
- New illness outbreak
- Reactive management

Management Plan

- History of biotoxin closures
- Toxin-producing phytoplankton
- Reasonable likelihood that biotoxin closures could occur

Section II. Model Ordinance Chapter IV. Shellstock Growing Areas B. Marine Biotoxin Management Plan and @.04 Marine Biotoxin control

- Management Plan
- **♦ 5 Management Strategies Options**
- Model Ordinance guidance/strategy
- New "Controlled Access Status"

Federal Waters Molluscan Shellfish Harvest *Marine Biotoxin*

<u>Management Strategies:</u>

- 1. Phytoplankton monitoring
- 2. Routine shellfish toxicity monitoring
- 3. Pre-harvest shellfish toxicity testing
- 4. Shellfish lot testing
- 5. Pre-harvest shellfish toxicity screening and lot testing

Phytoplankton Monitoring

- Routine monitoring
- Frequency based on historic database
 - Or, 36 samples over 3 years from representative environmental conditions
- Must be used with another strategy
 - Trigger shellfish toxicity testing
- Potential scenarios
 - Traditional monitoring programs used by states
 - Aquaculture sites in nearby federal waters

Shellfish Toxicity Monitoring

- Routine Sampling
- Frequency based on historic database
 - Or, 36 samples over 3 years from representative environmental conditions
- Species-Specific
 - Or use highest risk species
- Potential scenarios
 - Traditional monitoring programs used by states
 - Aquaculture sites in nearby federal waters

Pre-Harvest Shellfish Toxicity Testing

- Testing Pre-harvest
- Harvest Area Specific to intended harvest area
- Advance Short duration (3 days)
- Potential scenarios
 - Easily accessible and remote
 - Wild harvest and aquaculture
- Frequency: 36 samples/3 years

Photo credit: NOAA Fisheries - Julie Rose

Shellfish Lot Testing

- Testing post-harvest
- Lot specific to harvest area/lot
- Controlled controlled access status
- Tags restricted shellstock tags/require holding shellstock until lots tests are available
- Potential scenarios
 - Easily accessible and remote
 - Wild harvest and aquaculture
- Frequency: 36 samples/3 years

Pre-Harvest Screening + Lot Testing

- Pre-harvest Shellfish Screening/intended harvest area coupled with:
- Lot Testing Upon Landing/initial Dealer
- Controlled Controlled Access Status
- Tags Restricted Shellstock tags/require holding shellstock until lots tests are available
- Potential scenarios
 - Easily accessible and remote
 - Wild harvest and aquaculture
- Frequency: 36 samples/3 years

Challenges and the Future

Emerging technology models

- Machine learning forecasting with toxin data
- Biological/Physical model using oceanographic, weather, and ship-based survey of cysts
- Drone sampling, Imaging FlowCytobot, Environmental Sample Processor - imaging realtime, Other?

laurice.churchill@noaa.gov

